Austria | Germany | France | Sweden | India | USA | China | Singapore
Q.series X A156
Products & Services | 3 minutes Reading Time |

Q.series X A156

New 4-channel carrier frequency amplifier for inductive transducers and strain gages

Inductive transducers play an essential role in today’s world. The transducers are used for the measurement of positions, displacement, rotation, vibration, and material thickness. In test and measurement applications and frequently in the field of structural health monitoring of civil infrastructure, power plants, or condition monitoring in the process industry.

Inductive displacement transducers are a proven, reliable measurement option for detecting displacements and positions. They are characterized by contactless and thus extremely low-wear detection with a high possible measurement dynamic. If high-quality materials are used, extraordinary robustness is achieved, which allows maintenance-free operation for decades. With inductive displacement transducers, high-precision measurements can be carried out under dirty or harsh environmental conditions.

Q.series X A156

We developed the new 4-channel carrier frequency amplifier, A156, for measuring strain gages and, especially, inductive transducers. the module is based on our renowned ed A106 carrier frequency amplifier, which has been proven for years. In contrast to the A106, the A156 has four channels but does without the analog outputs.

The A156 excites the transducers with a 4.8 kHz AC voltage, the so-called carrier frequency (abbreviated CF). The amplitude is software selectable, either 2.5 V or 5 V. The module offers 16 measurement ranges and a sample rate of 20 kHz per channel with a 24-bit resolution. Adjustable digital filters allow further optimization of the measurement data according to the application’s needs. 

The module is available with the front screw terminals or SubD sockets in the DSUB9 and DSUB15-HD versions. It thus offers all necessary connection options for modernizing your existing measurement setup.

Main features:

Assembly_A156_Bundle
  • Four galvanically isolated input channels for inductive transducers and strain gages
  • Carrier frequency technology with 4.8 kHz AC excitation and software selectable amplitude 2.5 V or 5 V (per channel)
  • 16 measuring ranges from 1.25 mV/V to 1000 mV/V
  • 20 kHz measuring rate per channel with 24-bit resolution
  • 500 V isolation voltage channel to channel, channel to power supply, and channel to bus

Why inductive transducers?

Inductive transducers (also known as passive transducers) are used primarily in experimental environments or under challenging environmental conditions (temperature, radiation, EMC) since they can be flexibly adapted to the respective measurement task. With an external, flexible measuring amplifier such as the A156 module, transducers can also be optimally used below the nominal measuring range due to different measuring ranges. In the case of active transducers, however, the range of application is limited to the nominal measuring path due to integrated electronics, so this type of transducer is more likely to be found in the industrial sector and normal ambient conditions.

How inductive displacement transducers work

The inductive measuring principle is based on the change of a coil’s behavior (inductance) by the change of position of a magnetizable core inside the coil. There are two wiring types for the coils:

  • Coil with center tap (differential inductor) 
  • Configuration of electrically separated primary and secondary coils 

Advantages of a carrier frequency amplifier

The coils of inductive displacement transducers require an AC voltage to generate the magnetic field. This is where the carrier frequency comes into play – an AC excitation voltage with a typical frequency of 4.8 kHz. The transducer modulates the amplitude of this AC excitation voltage.

The transducer modulates the amplitude of this AC excitation voltage. This transducer signal is isolated from the carrier signal in the measuring amplifier and processed through a demodulation process.

Since only modulated signals, i.e. a narrow band of the signal frequency, are transmitted, this results in significantly lower sensitivity to interference. Carrier frequency amplifiers transmit selectively, providing much better data in terms of stability, noise, and drift. Carrier frequency amplifiers are versatile: strain gages and strain gage transducers, inductive bridges, LVDTs, RVDTs, capacitance or inductance-based strain gages, and piezo-resistive sensors can be connected.

Operating principle carrier frequency measurement

Learn in one of our following articles how a 2-point scaling can easily calibrate a variety of sensors.

More articles

News

Innovation in Alpine Solar: Overcoming Winter Energy Challenges

Switzerland is investing in the untapped potential of Alpine photovoltaic (PV) generation and making strides toward a sustainable future. This blog explores the innovative Sedrun Solar project, a pioneering high-altitude PV initiative to fill the winter energy gap. Uncover how rigorous testing and insightful data collection, facilitated by Gantner Instruments, are paving the way for optimizing this renewable energy source.

Read more...
Events

Industrial Transformation ASIA-PACIFIC 2025

Industrial Transformation ASIA-PACIFIC 2025 – Advancing Smarter Manufacturing 15–17 October 2025 | Singapore EXPO

Read more...
Success Stories

Airbus has selected the Q.raxx EC with EtherCAT interface as the integrated control and measurement solution for their component structural testing lab

Airbus Helicopters is a world-leading designer and manufacturer of helicopters. The company’s product line offers the full spectrum of rotary-wing aircraft solutions for civil, government, military, law enforcement and parapublic uses. With the growth in business and innovation of their product offering, Airbus Helicopters decided to modernize their structural test facility at their main facility in Donauwörth, Germany.

Read more...
NewsProducts & Services

Introducing GI.bench – Enhanced DAQ Capabilities for Engineering Excellence

Engineers and technicians often have a lot of problems when they are dealing with complicated data acquisition setups. These setups can include large amounts of data, the use of different devices, and the need for information in real time. Addressing these challenges head-on, Gantner Instruments proudly announces the latest evolution of our industry-leading software, GI.bench.

Read more...