Austria | Germany | France | Sweden | India | USA | China | Singapore
Force monitoring improves efficiency of Airbus’ Final Assembly Line
News | < 1 minute Reading Time |

Force monitoring improves efficiency of Airbus’ Final Assembly Line

In November 2016 the Airbus A350-1000 flew for the very first time. The A350-1000 is part of the A350 XWB family and is Airbus’ largest and most powerful twin-engined airliner ever. Airbus began the assembly of the A350-1000 in September, 2015, less than a year after the first delivery of the A350-900. For maximum flexibility, the existing A350 XWB Final Assembly Line (FAL) can be used for both A350-900 and A350-1000 models.

The major A350 XWB sections like fuselage, wings, engines and tail are built by Airbus’ European production locations in France, Germany, Spain and the UK. At the A350 XWB Final Assembly Line in Toulouse (France) the jetliner then comes together like a well-planned, high-tech puzzle. Fuselage section joining and wing/fuselage mating is done in gigantic assembly jigs. The assembly of these large, flexible components is a complex task. Positioning systems are used to accurately locate in space the aircraft sections to allow the best fit among them. With the aid of force sensors mounted on the end-effector of each positioner, the forces acting on the aircraft component can be monitored during the motion. This assures strain-free handling of the components, and thus, prevents them from damage. Gravitation causes geometric deformation in fuselage sections and wings. Before assembly the sections need to be untwisted to ensure unstressed joining.

The whole process is monitored by 300 force sensors connected to a Gantner Q.bloxx measurement system. A total of 150 x Q.bloxx A101 modules are used for primary monitoring tasks. Another 300 x Q.bloxx A102 modules are used for redundant monitoring and are integrated into the plant security system via Modbus TCP/IP.

The Q.bloxx system architecture, combined with its modular design, offers Airbus maximum flexibility. Each Q.bloxx module may be randomly installed close to the actual point of measurement and connected via high-speed serial interfaces. This not only reduces cabling complexity, but also allows a highly-synchronized measurement that is less prone to noise due to shorter sensor cable runs. The Q.bloxx “hot swap” feature allows for efficient service and maintenance of the monitoring system without the need to shut down power or re-configuring the monitoring system, minimizing downtime and increasing overall efficiency of the Final Assembly Line.

More articles

Events

PowerUp EV: Virtual Business Meet on EV Technology

Join us for PowerUp EV, a virtual business meet dedicated to exploring the latest advancements and trends in Electric Vehicle (EV) technology. Organized by Smart Energy Magazine the event is cosponsored by Gantner Instruments, a leading provider of testing solutions for the automotive industry, this event aims to bring together experts, professionals, and enthusiasts in the EV sector for insightful discussions and networking opportunities.

Read more...
Events

IWSHM 2025 for Advancing Structural Health Monitoring

The 15th International Workshop on Structural Health Monitoring (IWSHM 2025) will take place from September 9 to 11, 2025, at Stanford University, CA. This event is one of the premier global forums for advancing SHM research, applications, and technologies.

Read more...
Events

Automation & Testing in Turin

A&T – Automation & Testing in Turin is where industrial automation, test benches, and digital manufacturing meet. Visit Gantner Instruments from 11–13 February 2026 to see how smart data acquisition turns production and test systems into reliable, Industry 4.0-ready data sources.

Read more...
News

Demystifying Digital Metrology

A Comprehensive Guide to the Fundamentals of Electronic Measurement Technology

Read more...