The major A350 XWB sections like fuselage, wings, engines and tail are built by Airbus’ European production locations in France, Germany, Spain and the UK. At the A350 XWB Final Assembly Line in Toulouse (France) the jetliner then comes together like a well-planned, high-tech puzzle. Fuselage section joining and wing/fuselage mating is done in gigantic assembly jigs. The assembly of these large, flexible components is a complex task. Positioning systems are used to accurately locate in space the aircraft sections to allow the best fit among them. With the aid of force sensors mounted on the end-effector of each positioner, the forces acting on the aircraft component can be monitored during the motion. This assures strain-free handling of the components, and thus, prevents them from damage. Gravitation causes geometric deformation in fuselage sections and wings. Before assembly the sections need to be untwisted to ensure unstressed joining.
The whole process is monitored by 300 force sensors connected to a Gantner Q.bloxx measurement system. A total of 150 x Q.bloxx A101 modules are used for primary monitoring tasks. Another 300 x Q.bloxx A102 modules are used for redundant monitoring and are integrated into the plant security system via Modbus TCP/IP.
The Q.bloxx system architecture, combined with its modular design, offers Airbus maximum flexibility. Each Q.bloxx module may be randomly installed close to the actual point of measurement and connected via high-speed serial interfaces. This not only reduces cabling complexity, but also allows a highly-synchronized measurement that is less prone to noise due to shorter sensor cable runs. The Q.bloxx “hot swap” feature allows for efficient service and maintenance of the monitoring system without the need to shut down power or re-configuring the monitoring system, minimizing downtime and increasing overall efficiency of the Final Assembly Line.
More articles
Enhanced Functionality with GI.bench’s Newest Release: Revamped UI, Powerful Tools and More!
Introducing the latest update to our powerful and intuitive testing and measurement software - GI.bench. This update promises to elevate your testing capabilities with features designed to streamline your workflow and maximize productivity.
Read more...Precision Quiescent-Current Measurement with Q.series XL Slimline A108 2SC
Quiescent current measurement is essential across various industries, notably in the development of battery-powered devices, automotive electronics, and energy-efficient technologies. Also known as standby current, this crucial parameter measures the current in electronic systems during idle states, significantly impacting power consumption, battery longevity, and overall efficiency. Minor inaccuracies in its measurement can lead to considerable consequences.
Read more...Turn your TwinCAT automation system into a high-performance Data Acquisition System
Connectivity and flexible integration of our high-accuracy and high-speed I/O modules into any automation system is in our DNA. That is why we have made our high-performance Q.series X I/O modules available for easy and comfortable integration into TwinCAT, the EtherCAT master from Beckhoff.
Read more...IPERMON Workshop
Improved photovoltaic (PV) system reliability and lifetime output can be safeguarded by advanced performance monitoring solutions integrated with novel data-analytic features and leverage interoperable communicative capabilities.
Read more...