Pour les essais de ces moteurs électriques, nous avons mis en œuvre la solution d’acquisition de données et l’évaluation pour un grand fournisseur automobile allemand. La consommation d’énergie et la vitesse sont importantes pour évaluer l’efficacité des systèmes électromécaniques. Étant donné que les moteurs sont installés de manière permanente dans les pièces de carrosserie des véhicules, les signaux électriques de courant et de tension sont souvent les seuls disponibles pour les tests de qualité.
Utilisation du signal de courant pour déterminer la vitesse du moteur
Dans un moteur à courant continu classique, le collecteur mécanique entraîne une brève chute de la courbe de courant lorsque les pôles sont inversés. En fonction de la conception et du nombre de pôles du moteur, la quantité de creux de courant correspond à un tour. Ce modèle se reflète également dans la courbe de courant des moteurs sans balais à commutation électronique.
La figure 1 illustre la courbe de courant d’un moteur en fonction du temps. Le courant illustré ici a été mesuré avec un module E/S Q.bloxx XL A107 et un shunt. Les chutes de courant visibles dans cet exemple se produisent pendant la commutation à des intervalles de 8,4 ms.
En conséquence, le spectre de la courbe de courant (figure 2) montre que son maximum se produit à 119 Hz. En supposant 3 commutations par tour, cela correspond à une vitesse de 2380 tours par minute.
Le spectre peut être effectué à la fois en ligne et hors ligne par les contrôleurs Q.series X. De cette manière, le régime du moteur peut être déterminé en continu et en direct sur le banc d’essai à l’aide du signal de courant. La configuration nécessaire s’effectue en quelques étapes seulement.
Configuration rapide et facile sur le banc d’essai
La fonction FFT du contrôleur Q.series X offre, entre autres, la possibilité d’évaluer le maximum d’un spectre à l’intérieur d’une bande de fréquence sélectionnée, par magnitude et par fréquence. La fréquence du maximum correspond à l’onde fondamentale et est divisée par le nombre de pôles et multipliée par 60 pour donner la vitesse en tours par minute (tr/min). Le courant est également utilisé pour détecter si le moteur fonctionne et si la puissance électrique peut être calculée.
Ce type de calcul permet de déterminer la vitesse du moteur sans avoir recours à un ordinateur séparé.
Selon la configuration du banc d’essai, les données peuvent maintenant être transférées à la commande du système, par exemple via EtherCAT, ou visualisées dans GI.bench sur le PC du banc d’essai ou sur le réseau local.
Une visualisation simplement puissante
Avec GI.bench, vous pouvez créer des tableaux de bord personnalisés pour la visualisation. La figure 4 montre la vitesse et la puissance dans le graphique supérieur. Lorsque le moteur est chargé, la vitesse diminue (courbe verte), tandis que la puissance consommée augmente (courbe grise). En outre, le spectre actuel (bleu), la trace actuelle (rouge) et les paramètres (tableau) sont affichés numériquement dans cette interface.
Pour des références, des programmes de démonstration et des questions, vous pouvez toujours nous contacter à l’adresse info@gantner-instruments.fr.
More articles
GDevCon 4 Glasgow
Plongez dans le monde vibrant de la programmation graphique à la GDevCon 2023 les 20 et 21 septembre, de 9h00 à 18h00, au prestigieux Glasgow Science Centre, en Écosse. Cette conférence est un événement incontournable pour tous ceux qui s'efforcent de repousser les limites dans les domaines de l'ingénierie et de la technologie.
Read more...Mesure précise des systèmes à haute tension
Dans les environnements à haute tension, la précision et la fiabilité des systèmes de mesure sont cruciales pour la sécurité, la conformité et l'optimisation des performances. Les essais et mesures à haute tension font partie intégrante du développement et de la production d'équipements et de systèmes fonctionnant dans des conditions de haute tension, tels que les systèmes de transmission d'énergie, les moteurs et générateurs à haute tension et les composants pour véhicules électriques. Les modules Q.series X A12x de Gantner Instruments (par exemple, Q.series X A128) offrent des solutions sophistiquées pour répondre aux défis uniques des mesures de haute tension.
Read more...Webinar – Crate.io + Gantner Instruments : Contrôle du réseau énergétique en temps réel basé sur le big data
Avec l'augmentation des sources d'énergie renouvelables, le défi pour les opérateurs de réseaux électriques de maintenir les fréquences du réseau stables est devenu encore plus important. La collecte constante de données est essentielle pour la technologie de contrôle moderne et permet d'exécuter les contrôles plus rapidement, ce qui permet d'optimiser davantage l'utilisation des réseaux intelligents.
Read more...Mesures EIS de haute puissance dans le monde réel – Webinaire gratuit
Gantner Instruments invite les experts et les décideurs des entreprises manufacturières et de la gestion des actifs à notre webinaire ciblé sur "Real-world High-Power EIS Measurements" (Mesures EIS de haute puissance dans le monde réel).
Read more...