Austria | Germany | France | Sweden | India | USA | China | Singapore
Essai d’un véhicule électrique autonome en 3 étapes simples
Conseils et tendances | 3 minutes Temps de lecture |

Essai d’un véhicule électrique autonome en 3 étapes simples

Les automobiles disposent d'une variété d'entraînements électriques. Qu'il s'agisse du toit ouvrant, du lève-vitre, du réglage des sièges ou du couvercle du coffre, partout on trouve des moteurs électriques qui nous apportent du confort dans nos voitures.

Pour les essais de ces moteurs électriques, nous avons mis en œuvre la solution d’acquisition de données et l’évaluation pour un grand fournisseur automobile allemand. La consommation d’énergie et la vitesse sont importantes pour évaluer l’efficacité des systèmes électromécaniques. Étant donné que les moteurs sont installés de manière permanente dans les pièces de carrosserie des véhicules, les signaux électriques de courant et de tension sont souvent les seuls disponibles pour les tests de qualité.

Utilisation du signal de courant pour déterminer la vitesse du moteur

Dans un moteur à courant continu classique, le collecteur mécanique entraîne une brève chute de la courbe de courant lorsque les pôles sont inversés. En fonction de la conception et du nombre de pôles du moteur, la quantité de creux de courant correspond à un tour. Ce modèle se reflète également dans la courbe de courant des moteurs sans balais à commutation électronique.

La figure 1 illustre la courbe de courant d’un moteur en fonction du temps. Le courant illustré ici a été mesuré avec un module E/S Q.bloxx XL A107 et un shunt. Les chutes de courant visibles dans cet exemple se produisent pendant la commutation à des intervalles de 8,4 ms.

Stromverlauf
Fig. 2 : Spectre de la courbe caractéristique du courant

En conséquence, le spectre de la courbe de courant (figure 2) montre que son maximum se produit à 119 Hz. En supposant 3 commutations par tour, cela correspond à une vitesse de 2380 tours par minute.

Le spectre peut être effectué à la fois en ligne et hors ligne par les contrôleurs Q.series X. De cette manière, le régime du moteur peut être déterminé en continu et en direct sur le banc d’essai à l’aide du signal de courant. La configuration nécessaire s’effectue en quelques étapes seulement.

Configuration rapide et facile sur le banc d’essai

La fonction FFT du contrôleur Q.series X offre, entre autres, la possibilité d’évaluer le maximum d’un spectre à l’intérieur d’une bande de fréquence sélectionnée, par magnitude et par fréquence. La fréquence du maximum correspond à l’onde fondamentale et est divisée par le nombre de pôles et multipliée par 60 pour donner la vitesse en tours par minute (tr/min). Le courant est également utilisé pour détecter si le moteur fonctionne et si la puissance électrique peut être calculée.

Fig. 3 : Configuration matérielle avec GI.bench

Ce type de calcul permet de déterminer la vitesse du moteur sans avoir recours à un ordinateur séparé.

Selon la configuration du banc d’essai, les données peuvent maintenant être transférées à la commande du système, par exemple via EtherCAT, ou visualisées dans GI.bench sur le PC du banc d’essai ou sur le réseau local.

Une visualisation simplement puissante

Avec GI.bench, vous pouvez créer des tableaux de bord personnalisés pour la visualisation. La figure 4 montre la vitesse et la puissance dans le graphique supérieur. Lorsque le moteur est chargé, la vitesse diminue (courbe verte), tandis que la puissance consommée augmente (courbe grise). En outre, le spectre actuel (bleu), la trace actuelle (rouge) et les paramètres (tableau) sont affichés numériquement dans cette interface.

Fig. 4 : Visualisation avec GI.bench

Pour des références, des programmes de démonstration et des questions, vous pouvez toujours nous contacter à l’adresse info@gantner-instruments.fr.

More articles

Conseils et tendances

Comment communiquer avec une station Q.station en utilisant Python

La Q.station est un système polyvalent d'acquisition de données (DAQ) et de contrôle conçu pour répondre aux exigences élevées des applications dans divers secteurs. L'acquisition de données à grande vitesse et le traitement en temps réel figurent parmi les principaux atouts de la Q.station, ce qui en fait un outil idéal pour des domaines tels que l'aérospatiale et l'automatisation industrielle.

Read more...
Evénements

Le salon de la batterie en Europe 2023

Vous êtes curieux de connaître les dernières innovations de Gantner Instruments ? Plongez dans notre blog sur les tests de batteries et découvrez ce que nous vous réservons pour le Battery Show Europe 2023 !

Read more...
Conseils et tendances

Surveillance des ponts ferroviaires basée sur le cloud avec le Q.series DAQ alimenté par l’énergie solaire

Pour un grand opérateur ferroviaire, Gantner Instruments surveille en permanence un pont ferroviaire en utilisant des transducteurs de déplacement pour détecter la déflexion des éléments de support du pont.

Read more...
Conseils et tendances

Rationalisation de l’acquisition des données au CERN avec Blinky-Lite et Gantner Instruments

L'acquisition de données sûres, sécurisées et traçables est essentielle dans les environnements scientifiques complexes et à grande échelle tels que l'Organisation européenne pour la recherche nucléaire (CERN). Un accès à distance fiable est essentiel pour aider les différents membres de l'équipe dans la configuration et l'exploitation de leur système d'acquisition de données (DAQ). En collaboration avec l'équipe Blinky-lite, nous avons mis en place une configuration de test qui permet de relever avec succès ces défis dans des environnements contraignants.

Read more...