Alors que le monde s’oriente vers une plus grande dépendance aux énergies renouvelables, le besoin de solutions flexibles pour équilibrer l’offre et la demande d’énergie devient crucial. Les pompes à chaleur domestiques sont une technologie clé qui présente un grand potentiel à cet égard. Les recherches en cours explorent la manière dont ces systèmes de pompes à chaleur et leurs capacités de stockage thermique peuvent être exploités en tant que ressources flexibles au sein du système d’énergie électrique plus large. En tant que partenaire industriel du Josef Ressel Centre for Intelligent Thermal Energy Systems de l’Université des sciences appliquées du Vorarlberg, Gantner Instruments stimule l’innovation dans le domaine de la gestion de la demande avec des systèmes de pompes à chaleur, en mettant l’accent sur l’amélioration des performances et la simplification des processus de recherche. Cet article se penche sur le banc d’essai utilisé à des fins de recherche [1], en mettant en évidence la configuration des capteurs et des actionneurs, les défis en matière de contrôle et le rôle essentiel joué par GI.bench et GI.cloud dans l’optimisation des performances de la pompe à chaleur.
Configuration du banc d’essai
Le banc d’essai est constitué d’une pompe à chaleur à eau chaude à air de 200 litres. Équipé d’un ensemble complet de capteurs et d’actionneurs, le banc d’essai permet une acquisition et un contrôle détaillés des données. Des thermocouples de type K mesurent les températures telles que le puits thermique, l’entrée d’eau, la sortie d’eau chaude et la température ambiante. En outre, un wattmètre enregistre la consommation électrique, tandis qu’un débitmètre magnétique inductif mesure le débit volumétrique. Le contrôle du profil de la demande d’eau chaude est assuré par une vanne motorisée à deux voies à commande continue. Toutes les tâches d’acquisition et de contrôle des données sont gérées de manière transparente par la Q.station-XT de Gantner Instruments.
Augmentation des performances pour les chercheurs
La simplicité de GI.bench et de GI.cloud joue un rôle essentiel en permettant un prétraitement transparent des données dans une configuration de laboratoire. Le GI.bench facilite la connexion des systèmes de pompe à chaleur à GI.cloud, une plateforme centralisée qui donne aux chercheurs les moyens de contrôler l’unité de pompe à chaleur unique. Développé à l’aide de carnets Jupyter Python, le logiciel peut être facilement déployé à la fois sur le dispositif Edge de Q.station et sur GI.cloud, créant ainsi un écosystème logiciel unifié. Cet environnement rationalisé permet aux chercheurs d’effectuer sans effort le prétraitement des données, l’identification du système et l’estimation de l’état. L’interface conviviale et les flux de travail intuitifs de GI.bench et GI.cloud libèrent les chercheurs des aspects techniques complexes, leur permettant de se concentrer sur leurs principaux objectifs de recherche.
Le GI.cloud permet aux chercheurs d’accéder aux systèmes de pompes à chaleur et de les contrôler depuis n’importe où. Le Edge device de la Q.station agit comme un pont crucial, facilitant le transfert de données transparent et les fonctionnalités de contrôle entre le système de pompe à chaleur et le GI.cloud. Cette infrastructure de connectivité permet aux chercheurs de surveiller, d’analyser et d’optimiser à distance les programmes des pompes à chaleur en temps réel. Dans le cas de la démonstration, la routine d’optimisation a fonctionné à intervalles de 15 minutes, analysant les données et prédisant le meilleur état de commutation pour un horizon de prédiction allant jusqu’à 24 heures. La température moyenne du réservoir est cruciale pour le processus de décision, elle doit donc être calculée à l’aide de l’estimation d’état avant l’optimisation. Une fois l’optimisation terminée, la solution calculée est exécutée en temps réel sous forme de signal via les ports de sortie de la Q.station pour contrôler efficacement la pompe à chaleur en fonction des paramètres souhaités. Cette approche garantit des performances et une utilisation de l’énergie optimales pour le système de pompe à chaleur. Pour en savoir plus, consultez la publication en libre accès de Baumann et al. [1], qui a également fait l’objet d’un article dans Advances in Engineering .
Conclusion
La collaboration entre Gantner Instruments et le Centre Josef Ressel contribue à transformer la recherche sur les systèmes d’énergie thermique intelligents. En exploitant la puissance de GI.bench et GI.cloud, les chercheurs améliorent leurs performances, simplifient les flux de travail, sont en mesure d’extraire des informations précieuses et d’améliorer la flexibilité et l’efficacité des pompes à chaleur domestiques en tant que ressources flexibles. Les interfaces conviviales, la connectivité transparente et les capacités complètes de prétraitement des données offertes par GI.bench et GI.cloud permettent aux chercheurs de libérer tout le potentiel des systèmes de pompes à chaleur pour la gestion de la demande. Le partenariat permet ainsi d’accélérer et de rendre plus efficace la recherche nécessaire à la transition vers un système énergétique durable.
[1] C. Baumann, G. Huber, J. Alavanja, M. Preißinger, P. Kepplinger, Experimental validation of a state-of-the-art model predictive control approach for demand side management with a hot water heat pump, Energy and Buildings 285 (2023) 112923.doi:10.1016/j.enbuild.2023.112923.
More articles
Repas quotidiens pour 300 enfants
Après avoir établi notre société l'année dernière en Inde, nous avons eu connaissance de l'existence de la Sri Karpagavalli Vidyalays Middle School, une école accueillant 300 filles et garçons âgés de 5 à 14 ans. Non seulement ces enfants, qui viennent principalement des bidonvilles, manquent de matériel scolaire, mais ils n'ont souvent même pas accès à des produits de première nécessité comme la nourriture.
Read more...Nouvelle solution de surveillance – Q.series Portable
Pour la surveillance de l'état de divers actifs à court terme ou sur une base régulière, nous proposons désormais une solution de système portable. Notre nouvelle Q.series Portable basée sur la Q.station 101 et les cartes OEM pour les entrées analogiques et numériques contenues dans une mallette de transport robuste est entièrement conçue et prête à l'emploi "prête à l'emploi". Les cartes électroniques et le système d'alimentation sont montés sur des amortisseurs pour résister à un travail intensif dans des environnements difficiles sur le terrain.
Read more...EES Europe, Smart Energy Europe et Intersolar
EES Europe est le plus grand salon international des batteries et des systèmes de stockage d'énergie en Europe. Plus de 450 entreprises de stockage d'énergie présenteront des systèmes de stockage d'énergie à Munich.
Read more...Piles à combustible : Techniques de mesure avancées et navigation sur le marché de l’hydrogène
Le paysage énergétique est en pleine mutation, s'orientant vers des pratiques durables, et les piles à combustible se sont imposées comme un phare prometteur de l'énergie renouvelable. La maîtrise des piles à combustible, de leur fonctionnement interne et des nuances de leur mesure est au cœur de ce changement de paradigme vers l'énergie verte. Ces dispositifs, qui sont essentiellement des cellules électrochimiques transformant l'énergie chimique en électricité, promettent un avenir plus durable et neutre en carbone, à condition que nous puissions en exploiter tout le potentiel. Ce blog plonge dans l'univers scientifique captivant de la mesure des piles à combustible, en développant les méthodologies, les complexités, les défis et les percées qui rendent la technologie des piles à combustible si intrigante.
Read more...