L’utilisation de Python pour communiquer avec des DAQ comme la Q.station est avantageuse. Python offre de nombreuses bibliothèques pour le traitement, l’analyse et la visualisation des données. Des bibliothèques telles que Matplotlib, Plotly et Seaborn sont couramment utilisées pour créer des graphiques détaillés et interactifs afin que les utilisateurs puissent interagir et travailler avec leurs données d’une manière directe et conviviale.
Ce blog/tutoriel vous explique comment communiquer avec la Q.station et comment travailler avec les données que vous collectez en utilisant différents outils Python. Les extraits de code fournis vous aideront à appliquer ces étapes à vos propres besoins d’analyse de données.
Avant de commencer
- 1.1 Conditions préalables :
- Python 3.8 ou supérieur : Téléchargez ici
- GinsAPy_whl : Téléchargez ici
- Jupyter Lab
- 1.2 Dépendances :
- ginsapy
- gimodules
- pyqtgraph
- PyQt5
- gimodules
- numpy
- 1.3 Processus
Pour installer Jupyter Lab, il suffit d’exécuter la commande pip suivante :
Après l’installation, vous pouvez le démarrer avec la commande ‘jupyter lab’ :
Vous pouvez également installer toutes les dépendances nécessaires à l’aide des commandes pip :
Tout d’abord, importez les bibliothèques nécessaires et entrez l’IP de votre contrôleur comme indiqué dans le code ci-dessous.
Dans la section # Paramètres d’entrée, indiquez le canal que vous souhaitez voir représenté. Plusieurs entrées sont autorisées.
Cela vous permettra d’extraire des informations du contrôleur. L’extrait de code ci-dessous fournit une explication détaillée de chaque étape.
Voyons maintenant comment visualiser les données en temps réel de la station Q.station. Dans cet exemple, une nouvelle fenêtre contenant des données en temps réel apparaîtra, ainsi qu’un résumé des données de la dernière minute. Vous pouvez ajuster la durée du graphique récapitulatif à l’aide de la variable “plot_duration” (par exemple, “plot_duration = 300” pour un récapitulatif de cinq minutes). Ici, nous utilisons des données de température pour les graphiques.
Votre résultat devrait ressembler à ceci :
Vous pouvez également exécuter localement le script Python suivant. Pour vous connecter avec succès, vous aurez besoin d’une URL du nuage, d’un nom d’utilisateur et d’un mot de passe. Des commentaires détaillés dans l’extrait de code vous guideront à chaque étape.
En outre, la section analytique de Gantner Instruments ( https://demo.gi-cloud.io/) est en mesure de fournir des graphiques détaillés des flux et des variables choisis. Il suffit de remplir les données de connexion et de choisir les variables spécifiques à représenter. Par exemple, cela devrait ressembler à ceci :
Ce tutoriel a présenté la Q.station comme un outil fiable pour l’acquisition et le contrôle de données dans des secteurs exigeants comme l’aérospatiale. Il vous a montré comment utiliser Python pour communiquer facilement avec la station Q.et comment analyser visuellement les données. Vous pouvez facilement essayer ces extraits de code avec une station Q.station. Il vous suffit de suivre les instructions étape par étape dans les commentaires pour savoir comment procéder.
Inscrivez-vous ici à la formation en personne de Gantner Instruments. Apprenez-en plus sur l’acquisition de données et utilisez les dernières technologies de matériel et de mesure proposées par Gantner Instruments.
More articles
Appel à l’innovation avec le PDG Werner Ganahl de Gantner Instruments
Financement de l’État pour sept futurs projets numériques Les meilleurs projets d'innovation numérique du Vorarlberg ont été recherchés et financés. Sept projets reçoivent au total 130 000 euros de financement de l'État.
Read more...Automatisation et tests à Turin
A&T - Automation & Testing à Turin est le lieu où l'automatisation industrielle, les bancs d'essai et la fabrication numérique se rencontrent. Visitez Gantner Instruments du 11 au 13 février 2026 pour découvrir comment l'acquisition de données intelligentes transforme les systèmes de production et de test en sources de données fiables et prêtes pour l'industrie 4.0.
Read more...Comment communiquer avec une station Q.station en utilisant Python
La Q.station est un système polyvalent d'acquisition de données (DAQ) et de contrôle conçu pour répondre aux exigences élevées des applications dans divers secteurs. L'acquisition de données à grande vitesse et le traitement en temps réel figurent parmi les principaux atouts de la Q.station, ce qui en fait un outil idéal pour des domaines tels que l'aérospatiale et l'automatisation industrielle.
Read more...Qu’est-ce que la spectroscopie d’impédance électrochimique (EIS) ?
Alors que la société s'oriente vers les énergies propres et renouvelables, les batteries et les technologies de l'hydrogène deviennent de plus en plus cruciales. La spectroscopie d'impédance électrochimique (EIS) offre aux chercheurs et aux ingénieurs des informations précieuses sur le fonctionnement interne de ces technologies. Dans ce billet de blog, nous allons explorer les avantages du SIE, son intégration avec Q.series X, et son application aux batteries et aux technologies de l'hydrogène.
Read more...














